Incorporating Mortality Reductions from Use of Low-Cost Power into Evaluations of Externality Proposals

Daniel E. Klein
Twenty-First Strategies, LLC
McLean, VA

Valuing Externalities Workshop

National Energy Technology Laboratory February 20-21, 2003 McLean, Virginia

This Presentation is about Trade-offs

Prudent reductions in harmful emissions can lead to improved health protection

However, the economic costs of these regulations can <u>increase</u> risks to individuals, and hence shorten lifetimes

Key Issue: Do these opposing forces create net <u>benefits</u> or net <u>losses</u>?

- We develop a framework to examine this issue, focusing on coal use for electricity generation
- We estimate the cost-induced risks, to be used with outside estimates of emission reduction benefits

21st Strategies

Groundwork Developed in Early 1990s

Research efforts in 2 different areas:

- 1. Utility Externalities
 - Monetizing unregulated an/or residual emissions
 - State regulatory activities
 - ORNL studies
- 2. "Wealthier is Healthier" analyses
 - Explored adverse effects of lower income
 - Begun by Wildavski (1980)
 - Key contributions by Viscusi, Keeney, and others

Two Concepts Linked in 1994

- Kathan and Klein: Full Consideration of Externalities
- Raised the question: Can the costs of incorporating externalities have a negative effect on health and mortality?
- Initial work sponsored by DOE-FE (Tom Grahame)
- Presented at NARUC-DOE Fifth National Integrated Resource Planning Conference (Kalispell, MT, May 1994)

Many <u>Indirect</u> Health Effects of Powerplant Environmental Compliance

- Macro effects from higher costs
- Macro effects from employment changes
- Construction of replacement power facilities
- Development of natural gas and other fuel sources
- Fuel transportation risks and emissions
-and many others, both + and -

(from Keeney and von Winterfeldt, 1986)

Analytic Framework Refined in 2002

- Klein and Keeney: Mortality Reductions from Use of Low-Cost Coal-Fueled Power: An Analytical Framework
- Examines some of the mortality impacts when electric power costs rise
- ◆ A Peer-Reviewed study:
 - James K. Hammitt (Harvard School of Public Health)
 - Detlof von Winterfeldt (University of Southern California)

Higher Income Safer & Healthier

- Well documented that wealthier countries tend to have longer life spans
- Within countries, wealthier individuals tend to live longer than poorer ones
- Linkage is widely noted and embraced:
 - World Bank
 - World Health Organization
 - World Resources Institute
 - and many others
- Government policies increasingly focus on reducing human health and safety risks

Can <u>Reducing</u> Health and Safety Risks Also <u>Create</u> Health and Safety Risks?

- Most regulatory programs cost money
- Program costs reduce disposable income available for other purposes
- Fewer resources available for other health and safety measures, esp. among the lower-income households
- Hence, regulatory <u>costs</u> can impact mortality
 - Deaths due to less disposable income
 - Deaths due to higher unemployment

Regulatory Costs Can Create Difficult Tradeoffs

On <u>Net</u>, Greater Regulation May Not Always Save Lives

- Not simply a benefit-cost issue of "people vs. profits"
- It's a weighing of relative risks
 - Health and safety improvements due to regulation ...
 - ... versus health and safety losses due to the regulatory cost
- Logical and moral comparison is one of "people saved versus people lost"
 - "health-health" or "risk-risk" analysis

Three Primary Categories of Mortality Impacts

- 1. Adult mortalities induced by regulatory costs
- 2. Child mortalities induced by regulatory costs
- 3. Mortalities induced by higher unemployment

- This analysis focuses on #1: adult mortalities induced by regulatory costs.
- Other categories were reviewed but not rigorously quantified.

Methodology to Estimate Adult Deaths Induced by Regulatory Costs

- 1. Distribute costs by household income range use \$1 billion "unit cost"
- 2. Determine relationship between reduced income and mortality
- 3. Tabulate the mortality effects
 - Lives per \$ billion
 - \$ per induced death
- 4. Apply \$ per induced death to total cost of regulatory issue at hand

Three Methods to Distribute Costs Across Household Income Ranges

- Low end:
 Proportional to income
- 2. Best estimate: proportional to electricity use
- 3. High end: Equal \$ per household

Annual Cost per Household of a \$1 Billion Regulation in the U.S.

	Relative regulatory costs		
	Costs	Costs	
	proportional	proportional to	Equal costs
Income range (1999\$)	to income	<u>electricity use</u>	<u>per household</u>
Under \$10,000	\$0.87	\$6.31	\$9.55
\$10,000 - \$14,999	\$2.18	\$6.79	\$9.55
\$15,000 - \$24,999	\$3.48	\$7.28	\$9.55
\$25,000 - \$34,999	\$5.22	\$7.93	\$9.55
\$35,000 - \$49,999	\$7.40	\$8.75	\$9.55
\$50,000 - \$74,999	\$10.88	\$10.05	\$9.55
\$75,000 and over	\$22.14	\$14.26	\$9.55

Mortality Risk Increases for Lower Income Levels

Estimated Adult Deaths Induced per \$1 Billion of Regulatory Costs

_	Relative cost allocation		
	Proportional to income	Proportional to electricity use	Equal per <u>household</u>
\$Millions per death:	\$18.5	\$8.9	\$6.8
Total Adult Deaths: per \$1 billion	54	112	147

Summary of Coal Impact Analyses

(Adjusted to 100% Coal Replacement, 2000\$)

		Change in 2010 Disposable	Change in 2010 Employment
<u>Source</u>	<u>Scenario</u>	income (\$billions)	<u>(millions)</u>
DRI	Case 1: 77% of U.S. CO2	(\$454)	(3.7)
(1998)	reductions		
EIA SR 98-03	Reference Case vs. 1990 Level	(\$225)	(2.2)
(1998)	Scenario		
EIA SR 2001-03	Integrated NOx, SO2, CO2	(\$215)	(2.5)
(2001)	1990-7%, Hg (no RPS)		
Rose and Yang	High Price Gas Case (average	(\$170)	(4.5)
(2002)	of 4 scenarios)		
Rose and Yang	Low Price Gas Case (average	(\$127)	(3.4)
(2002)	of 4 scenarios)		
WEFA	Carbon Stabilization	(\$159)	(2.6)
(1997)			

21st Strategies

Estimated Adult Deaths Induced by Costs of Forgoing Coal

	Relative cost allocation			
	Proportional to income	Proportional to electricity use	Equal per household	
\$Millions per death:	\$18.5	\$8.9	\$6.8	
Total Adult Deaths:				
per \$1 billion	54	112	147	
\$125 billion	7,000	14,000	18,000	
\$225 billion	12,000	25,000	33,000	

Induced Deaths Fall Disproportionately on Lower-Income Households

	Households		Deaths	
<u>Income range</u> (1999\$)	Percent in Income Range	Cumulative <u>Percent</u>	Percent in Income Range	Cumulative <u>Percent</u>
Under \$10,000	9.2%	9.2%	27.2%	27.2%
\$10,000 - \$14,999	7.3%	16.5%	15.9%	43.1%
\$15,000 - \$24,999	14.1%	30.6%	23.1%	66.2%
\$25,000 - \$34,999	12.7%	43.3%	14.5%	80.7%
\$35,000 - \$49,999	15.8%	59.1%	11.6%	92.3%
\$50,000 - \$74,999	18.4%	77.5%	6.7%	99.1%
\$75,000 and over	<u>22.5%</u> 100.0%	100.0%	<u>0.9%</u> 100.0%	100.0%

Potential Areas of Future Analysis

- Goal: A fuller accounting of lives saved and lives lost
- Broadening the Analysis
 - Child mortality data
 - Unemployment effects

Other studies suggest substantial mortality impacts, possibly > 100,000 lives

- Time period over which income and employment impacts persist
- Deepening the Analysis
 - Use more current data on mortality (U.S. & other countries)
 - Refine and strengthen connections between residential electricity use and cost impacts

21st Strategies